Progressive Kernel Pruning Based on the Information Mapping Sparse Index for CNN Compression

نویسندگان

چکیده

Network pruning can effectively reduce a model's capacity and computational load, thereby making model deployment in mobile devices less difficult than that without pruning. To improve the rate of while maintaining kernel's feature extraction ability, this paper designs progressive kernel method for CNN compression based on proposed information mapping sparsity index. This first prunes kernels filter then convolution layer when reaches certain ratio. The whole process is called (PKP). For process, defines sparse index (IMSI), which used to measure ability related amount transferred by operation. When filters layers, according IMSI, with strongest abilities are retained transfer as much possible least number kernels. Progressive make use characteristic easy optimize filter, it avoids having easily fall into local optima directly. experimental results CIFAR-10/100 ImageNet datasets show compared existing methods, IMSI-based exhibits better performance processing tasks currently popular. In particular, VGG-16 CIFAR-10 our achieves ratio 80.8x an acceleration 14.8×, 5.8× 4.2× higher best at present, respectively, classification accuracy decreases only 0.59% relative baseline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Entropy-based Pruning Method for CNN Compression

This paper aims to simultaneously accelerate and compress off-the-shelf CNN models via filter pruning strategy. The importance of each filter is evaluated by the proposed entropy-based method first. Then several unimportant filters are discarded to get a smaller CNN model. Finally, finetuning is adopted to recover its generalization ability which is damaged during filter pruning. Our method can...

متن کامل

Frequency based Kernel Estimation for Progressive Photon Mapping Supplementary Material

We present an extension to Hachisuka et al.’s Progressive Photon Mapping (or PPM) algorithm [Hachisuka et al. 2008] in which we estimate the radius of the density estimation kernels using frequency analysis of light transport [Durand et al. 2005]. We predict the local radiance frequency at the surface of objects, and use it to optimize the size of the density estimation kernels, in order to acc...

متن کامل

Light Syntactically-Based Index Pruning for Information Retrieval

Most index pruning techniques eliminate terms from an index on the basis of the contribution of those terms to the content of the documents. We present a novel syntactically-based index pruning technique, which uses exclusively shallow syntactic evidence to decide upon which terms to prune. This type of evidence is document-independent, and is based on the assumption that, in a general collecti...

متن کامل

On the Mapping of Index Compression Techniques on CSR Information Retrieval

Information retrieval is the selection of documents relevant to a query. Inverted index is the conventional way to store the index of the collection. Because of the large amounts of data, compression techniques are commonly used in information retrieval systems to reduce the size of the inverted index. We experimentally evaluate the result of the mapping of such techniques on the Compressed Spa...

متن کامل

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3051504